18 research outputs found

    Multi-parameter optimization tool for low-cost commercial fuselage crown designs

    Get PDF
    The work in progress for developing a methodology and software tool to aid in the optimal design of composite structures is discussed. The methodology is being developed to take advantage of the ability to tailor the composite material in conjunction with the design of the structure. The composites optimization design software UWCODA was found to be very successful in preliminary testing and early experience. UWCODA is a composites design code that uses a number of plies and fiber angles as design variables, employs maximum strain failure criteria for objective function and additional constraints, includes Boeing design tools for stiffened panels, and includes stiffener geometry in the design variables

    Anthropic Distribution for Cosmological Constant and Primordial Density Perturbations

    Full text link
    The anthropic principle has been proposed as an explanation for the observed value of the cosmological constant. Here we revisit this proposal by allowing for variation between universes in the amplitude of the scale-invariant primordial cosmological density perturbations. We derive a priori probability distributions for this amplitude from toy inflationary models in which the parameter of the inflaton potential is smoothly distributed over possible universes. We find that for such probability distributions, the likelihood that we live in a typical, anthropically-allowed universe is generally quite small.Comment: 12 pages, 2 tables. v3: Replaced to match published version (minor corrections of form

    Brane World Susy Breaking from String/M Theory

    Full text link
    String and M-theory realizations of brane world supersymmetry breaking scenarios are considered in which visible sector Standard Model fields are confined on a brane, with hidden sector supersymmetry breaking isolated on a distant brane. In calculable examples with an internal manifold of any volume the Kahler potential generically contains brane--brane non-derivative contact interactions coupling the visible and hidden sectors and is not of the no-scale sequestered form. This leads to non-universal scalar masses and without additional assumptions about flavor symmetries may in general induce dangerous sflavor violation even though the Standard Model and supersymmetry branes are physically separated. Deviations from the sequestered form are dictated by bulk supersymmetry and can in most cases be understood as arising from exchange of bulk supergravity fields between branes or warping of the internal geometry. Unacceptable visible sector tree-level tachyons arise in many models but may be avoided in certain classes of compactifications. Anomaly mediated and gaugino mediated contributions to scalar masses are sub-dominant except in special circumstances such as a flat or AdS pure five--dimensional bulk geometry without bulk vector multiplets.Comment: Latex, 83 pages, references adde

    Is Our Universe Natural?

    Full text link
    It goes without saying that we are stuck with the universe we have. Nevertheless, we would like to go beyond simply describing our observed universe, and try to understand why it is that way rather than some other way. Physicists and cosmologists have been exploring increasingly ambitious ideas that attempt to explain why certain features of our universe aren't as surprising as they might first appear.Comment: Invited review for Nature, 11 page

    A Calculable Toy Model of the Landscape

    Full text link
    Motivated by recent discussions of the string-theory landscape, we propose field-theoretic realizations of models with large numbers of vacua. These models contain multiple U(1) gauge groups, and can be interpreted as deconstructed versions of higher-dimensional gauge theory models with fluxes in the compact space. We find that the vacuum structure of these models is very rich, defined by parameter-space regions with different classes of stable vacua separated by boundaries. This allows us to explicitly calculate physical quantities such as the supersymmetry-breaking scale, the presence or absence of R-symmetries, and probabilities of stable versus unstable vacua. Furthermore, we find that this landscape picture evolves with energy, allowing vacua to undergo phase transitions as they cross the boundaries between different regions in the landscape. We also demonstrate that supergravity effects are crucial in order to stabilize most of these vacua, and in order to allow the possibility of cancelling the cosmological constant.Comment: 49 pages, LaTeX, 13 figures, references adde

    Categorizing Different Approaches to the Cosmological Constant Problem

    Full text link
    We have found that proposals addressing the old cosmological constant problem come in various categories. The aim of this paper is to identify as many different, credible mechanisms as possible and to provide them with a code for future reference. We find that they all can be classified into five different schemes of which we indicate the advantages and drawbacks. Besides, we add a new approach based on a symmetry principle mapping real to imaginary spacetime.Comment: updated version, accepted for publicatio
    corecore